3,440 research outputs found

    Maximum Euclidean distance network coded modulation for asymmetric decode-and-forward two-way relaying

    No full text
    Network coding (NC) compresses two traffic flows with the aid of low-complexity algebraic operations, hence holds the potential of significantly improving both the efficiency of wireless two-way relaying, where each receiver is collocated with a transmitter and hence has prior knowledge of the message intended for the distant receiver. In this contribution, network coded modulation (NCM) is proposed for jointly performing NC and modulation. As in classic coded modulation, the Euclidean distance between the symbols is maximised, hence the symbol error probability is minimised. Specifically, the authors first propose set-partitioning-based NCM as an universal concept which can be combined with arbitrary constellations. Then the authors conceive practical phase-shift keying/quadrature amplitude modulation (PSK/QAM) NCM schemes, referred to as network coded PSK/QAM, based on modulo addition of the normalised phase/amplitude. To achieve a spatial diversity gain at a low complexity, a NC oriented maximum ratio combining scheme is proposed for combining the network coded signal and the original signal of the source. An adaptive NCM is also proposed to maximise the throughput while guaranteeing a target bit error probability (BEP). Both theoretical performance analysis and simulations demonstrate that the proposed NCM can achieve at least 3 dB signal-to-noise ratio gain and two times diversity gain

    Network coded modulation for two-way relaying

    No full text
    Network coding compresses multiple traffic flows with the aid low-complexity algebraic operations, hence holds the potential of significantly improving both the power and bandwidth efficiency of wireless networks. In this contribution, the novel concept of Network Coded Modulation (NCM) is proposed for jointly performing network coding and modulation in bi-directional/duplex relaying. Each receiver is colocated with a transmitter and hence has prior knowledge of the message intended for the distant receiver. As in classic coded modulation, the Euclidian distance between the symbols is maximized, hence the Symbol Error Ratio (SER) is minimized. Specifically, we conceive NCM methods for PSK, PAM and QAM based on modulo addition of the normalized phase or amplitude. Furthermore, we propose low complexity decoding algorithms based on the corresponding conditional minimum distance criteria. Our performance analysis and simulations demonstrate that NCM relying on PSK is capable of achieving a SER at both receivers of the NCM scheme as if the relay transmitted exclusively to a single receiver only. By contrast, when our NCM concept is combined with PAM/QAM, an SNR loss (<1.25dB) is imposed at one of the receivers, usually at the one having a lower data rate in a realistic different rate scenario. Finally, we will demonstrate that the proposed NCM is compatible with existing physical layer designs

    Constraints on the energy spectrum of non-Hermitian models in open environments

    Full text link
    Motivated by recent progress on non-Hermitian topological band theories, we study the energy spectrum of a generic two-band non-Hermitian Hamiltonian. We prove rigorously that the complex energy spectrum of such a non-Hermitian Hamiltonian is restricted to the lower complex plane, provided that the parameters of the Hamiltonian satisfy a certain constraint. Furthermore, we consider one specific scenario where such a non-Hermitian Hamiltonian can arise, namely a two-band model coupled to an environment, and show that this aforementioned constraint orignates from very general physical considerations. Our findings are relevant in the definition of the energy gap in non-Hermitian topological band theories and also have implications on simulations of such theories using quantum systems.Comment: 7 pages, 1 figur

    Composite multi-vortex diffraction-free beams and van Hove singularities in honeycomb lattices

    Full text link
    We find diffraction-free beams for graphene and MoS2_2-type honeycomb optical lattices. The resulting composite solutions have the form of multi-vortices, with spinor topological charges (nn, n±1n\pm1). Exact solutions for the spinor components are obtained in the Dirac limit. The effects of the valley degree of freedom and the mass are analyzed. Passing through the van-Hove singularity the topological structure of the solutions is modified. Exactly at the singularity the diffraction-free beams take the form of strongly localized one-dimensional stripes.Comment: 4 pages, 6 figures, accepted for publication in Optics Letter

    Coalitional Game Theoretic Approach for Cooperative Transmission in Vehicular Networks

    Full text link
    Cooperative transmission in vehicular networks is studied by using coalitional game and pricing in this paper. There are several vehicles and roadside units (RSUs) in the networks. Each vehicle has a desire to transmit with a certain probability, which represents its data burtiness. The RSUs can enhance the vehicles' transmissions by cooperatively relaying the vehicles' data. We consider two kinds of cooperations: cooperation among the vehicles and cooperation between the vehicle and RSU. First, vehicles cooperate to avoid interfering transmissions by scheduling the transmissions of the vehicles in each coalition. Second, a RSU can join some coalition to cooperate the transmissions of the vehicles in that coalition. Moreover, due to the mobility of the vehicles, we introduce the notion of encounter between the vehicle and RSU to indicate the availability of the relay in space. To stimulate the RSU's cooperative relaying for the vehicles, the pricing mechanism is applied. A non-transferable utility (NTU) game is developed to analyze the behaviors of the vehicles and RSUs. The stability of the formulated game is studied. Finally, we present and discuss the numerical results for the 2-vehicle and 2-RSU scenario, and the numerical results verify the theoretical analysis.Comment: accepted by IEEE ICC'1

    A Cross-layer Perspective on Energy Harvesting Aided Green Communications over Fading Channels

    Full text link
    We consider the power allocation of the physical layer and the buffer delay of the upper application layer in energy harvesting green networks. The total power required for reliable transmission includes the transmission power and the circuit power. The harvested power (which is stored in a battery) and the grid power constitute the power resource. The uncertainty of data generated from the upper layer, the intermittence of the harvested energy, and the variation of the fading channel are taken into account and described as independent Markov processes. In each transmission, the transmitter decides the transmission rate as well as the allocated power from the battery, and the rest of the required power will be supplied by the power grid. The objective is to find an allocation sequence of transmission rate and battery power to minimize the long-term average buffer delay under the average grid power constraint. A stochastic optimization problem is formulated accordingly to find such transmission rate and battery power sequence. Furthermore, the optimization problem is reformulated as a constrained MDP problem whose policy is a two-dimensional vector with the transmission rate and the power allocation of the battery as its elements. We prove that the optimal policy of the constrained MDP can be obtained by solving the unconstrained MDP. Then we focus on the analysis of the unconstrained average-cost MDP. The structural properties of the average optimal policy are derived. Moreover, we discuss the relations between elements of the two-dimensional policy. Next, based on the theoretical analysis, the algorithm to find the constrained optimal policy is presented for the finite state space scenario. In addition, heuristic policies with low-complexity are given for the general state space. Finally, simulations are performed under these policies to demonstrate the effectiveness
    • 

    corecore